Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Dietrich Döpp, ${ }^{\text {a }}$ Emmanuel Sopbue Fondjo, ${ }^{\text {a }}$ Ulrich Flörke ${ }^{\text {b }}$ * and Gerald Henkel ${ }^{\text {b }}$

${ }^{\text {a }}$ Organische Chemie, Universität DuisburgEssen, D-47048 Duisburg, Germany, and
${ }^{\mathbf{b}}$ Department Chemie, Fakultät für
Naturwissenschaften, Universität Paderborn, Warburgerstrasse 100, D-33098 Paderborn, Germany

Correspondence e-mail: ulrich.floerke@upb.de

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.039$
$w R$ factor $=0.100$
Data-to-parameter ratio $=14.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The title compound, $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{NO}_{6} \mathrm{~S}$, shows a helical structure of the molecule. In the crystal packing, molecules are linked via intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interactions into infinite sheets that are stacked along [100].

Comment

2-Aminothiophenes, when [c]anellated to a mono- or oligocyclic π-system as in (I) (see scheme), undergo Diels-Alder additions with electron-poor alkenes across the dienoid system of the thiophene ring (Nyiondi-Bonguen et al., 1994; Al-Omran et al., 1996; Erian et al., 1998; Sopbue Fondjo et al., 2006) with subsequent loss of hydrogen sulfide from the $1: 1$ cycloadducts. In principle, the same reaction is possible with electron-poor alkynes. Under mild conditions, however, a Michael-type addition of the alkyne to C 1 of (I) is the preferred mode of reaction (Al-Omran et al., 1996; Sopbue Fondjo et al., 2006). Thus, the reaction of (I) with dimethyl ethynedicarboxylate, (II), at 338 K in methanol [stabilizing intermediate (III)] gives a 64% yield of the title compound, (IV), while in refluxing dioxane (375 K) only 26% of (IV) is obtained, together with 58% of the fused phthalate (V). In (I), $\mathrm{C1}^{\prime}$ (see scheme) is the doubly vinylene-homologous position of the $3^{\prime}-\mathrm{NH}_{2}$ group. In other words, C^{\prime} is electron rich and a good nucleophile towards electron-poor multiple bonds. The conjugate addition to generate (III) obviously has a lower activation energy than the [4+2]-cycloaddition leading to (V) by loss of hydrogen sulfide. Intermediate (III) just requires a protonation at the fumarate C 3 and a deprotonation at $\mathrm{C1}^{\prime}$ to form (IV). All attempts to achieve a separation of the enantiomers by HPLC on chiral stationary phases have so far been unsuccessful however (Sopbue Fondjo et al., 2006). We report here the crystal and molecular structure of (IV), whose crystallographic data (excluding structure factors) have been deposited at the Cambridge Crystallographic Data Centre as supplementary publication number CCDC 602732.

(V)

Received 17 August 2006 Accepted 21 August 2006
(C) 2006 International Union of Crystallography All rights reserved

Dimethyl 2-(3-amino-4-oxo-4H-benzo[f]-thieno[3,4-c]chromen-1-yl)fumarate

Figure 1
Molecular structure of (IV). Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
Crystal packing viewed along [100], with the intermolecular hydrogenbonding pattern indicated as dashed lines. H atoms not involved in hydrogen bonding have been omitted.

The molecular structure of (IV) (Fig. 1) shows a helical arrangement of the four fused rings $A(\mathrm{C} 1-\mathrm{C} 6), B(\mathrm{C} 1 / \mathrm{C} 6-$ C10), C (O2/C9-C11/C17/C16), D (C11/C12/S1/C18/C17) and the dicarboxylate unit. The dihedral angles between the rings are $A / B=7.2(1)^{\circ}, B / C=8.1(1)^{\circ}$ and $C / D=8.8(1)^{\circ}$. The aromatic ring system ($\mathrm{C} 1-\mathrm{C} 10$) is puckered, with atom deviations of -0.106 (2) for C8 and 0.153 (2) \AA for C10 from the mean plane, and the associated $\mathrm{C}-\mathrm{C}$ bond lengths lie between 1.358 (3) and 1.447 (3) \AA (Table 1). Rings C and D are almost planar, with largest deviations of 0.077 (2) for C10 and 0.034 (2) \AA for C 12 . Delocalization of the π system leads to a shortening of single $\mathrm{C}-\mathrm{C}$ bonds $[\mathrm{C} 10-\mathrm{C} 11=1.465$ (2) \AA, $\mathrm{C} 16-\mathrm{C} 17=1.429$ (3) \AA and $\mathrm{C} 11-\mathrm{C} 17=1.439$ (2) $\AA]$. The thiophene ring has geometric parameters similar to those of other thiophene systems, e.g. JIGGIP (Joseph et al., 1991; refcode in the Cambridge Structural Database; MOGUL, Version 1.0; Allen, 2002). The acetate group at C19 is almost coplanar with the $\mathrm{C} 13=\mathrm{C} 14$ bond, as shown by the
$\mathrm{C} 14=\mathrm{C} 13-\mathrm{C} 19-\mathrm{O} 4$ torsion angle of $-24.8(2)^{\circ}$, and is associated with an intramolecular $\mathrm{C} 14-\mathrm{H} \cdots \mathrm{O} 4$ interaction (Table 2). Another expected intramolecular hydrogen bond is $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$. The crystal packing (Fig. 2) is stabilized by strong intermolecular hydrogen bonds (Table 2) $\mathrm{N}-\mathrm{H} \cdots \mathrm{O} 1$ and $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O} 3$ that link molecules into extended sheets which are stacked along [100].

Experimental

A sample of 3-amino-4H-benzo[f]thieno $[3,4-c]-(2 H)$ chromen-2-one, (I) $(814 \mathrm{mg}, 3.05 \mathrm{mmol})$ and an excess of dimethyl ethynedicarboxylate, (II), in 10 ml of methanol was kept at reflux temperature for 10 h . The concentrated residue was stored in a freezer for several days. The precipitate was filtered off and crystallized from methanol to give 777 mg (62%) of (IV), m.p. 454-456 K. Single crystals of (IV) were grown from the same solvent. For spectroscopic and analytical details see Sopbue Fondjo et al. (2006).

Crystal data

$\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{NO}_{6} \mathrm{~S}$
$M_{r}=409.40$
Triclinic, $P \overline{1}$
$a=7.718$ (8) \AA
$b=9.451$ (11) \AA
$c=13.058(13) \AA$
$\alpha=109.40(1)^{\circ}$
$\beta=91.50(1)^{\circ}$
$\gamma=93.71(1)^{\circ}$

Data collection

Siemens P4 rotating anode
diffractometer
ω scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.903, T_{\text {max }}=0.928$
3903 measured reflections

$$
\begin{aligned}
& V=895.4(17) \AA^{3} \\
& Z=2 \\
& D_{x}=1.519 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.22 \mathrm{~mm}^{-1} \\
& T=150(2) \mathrm{K} \\
& \text { Prism, colourless } \\
& 0.47 \times 0.35 \times 0.34 \mathrm{~mm}
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.100$
$S=1.05$
3901 reflections
266 parameters
H-atom parameters constrained

$$
\begin{aligned}
& \begin{array}{l}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0446 P)^{2}\right. \\
\quad \\
\quad+0.3857 P] \\
\quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.003 \\
\Delta \rho_{\max }=0.29 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.31 \mathrm{e} \AA^{-3} \\
\text { Extinction correction: } S H E L X L 97 \\
\text { Extinction coefficient: } 0.004(1)
\end{array}
\end{aligned}
$$

Table 1

Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

S1-C18	$1.723(2)$	C6-C7	$1.421(3)$
S1-C12	$1.758(2)$	C7-C8	$1.358(3)$
O1-C16	$1.216(2)$	C8-C 9	$1.406(3)$
O2-C16	$1.377(2)$	C $9-\mathrm{C} 10$	$1.388(3)$
O2-C9	$1.385(2)$	C10-C11	$1.465(3)$
N1-C18	$1.341(2)$	C11-C12	$1.383(3)$
C1-C2	$1.421(3)$	C11-C17	$1.439(2)$
C1-C6	$1.425(3)$	C12-C13	$1.469(2)$
C1-C10	$1.447(3)$	C13-C14	$1.342(3)$
C2-C3	$1.373(3)$	C13-C19	$1.510(2)$
C3-C4	$1.404(3)$	C16-C17	$1.429(3)$
C4-C5	$1.366(3)$	C17-C18	$1.393(3)$
C5-C6	$1.419(3)$		
C18-S1-C12	$92.48(10)$	C16-O2-C9	$122.10(14)$

organic papers

Table 2
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C14-H14A \cdots O4	0.96	2.38	$2.733(3)$	101
N1-H1B \cdots O1	0.90	2.26	$2.854(4)$	124
N1-H1A \cdots O3 $^{\text {i }}$	0.90	2.13	$2.947(3)$	150
N1-H1B \cdots O1 $^{\text {ii }}$	0.90	2.31	$2.979(3)$	131

Symmetry codes: (i) $-x+1,-y,-z+1$; (ii) $-x+2,-y+1,-z+1$.
H atoms were located in difference Fourier maps and refined at idealized positions riding on the C and N atoms with $\mathrm{C}-\mathrm{H}=0.96 \AA$, $\mathrm{N}-\mathrm{H}=0.90 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C}, \mathrm{N})$ and $1.5 U_{\text {eq }}($ methyl C$)$. Methyl H atoms were refined as rigid groups allowed to rotate but not tip.

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL (Bruker, 2002); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

DD is indebted to Deutsche Forschungsgemeinschaft and Fonds der Chemischen Industrie for generous support.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Al-Omran, F., Abdel Khalik, M. M., Al-Awadhi, H. \& Elnagdi, M. H. (1996). Tetrahedron, 52, 11915-11928.
Bruker (2002). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Erian, A. M., Hafez, E. A. A., Darwish, E. S. \& Elnagdi, M. H. (1998). Can. J. Chem. 76, 1038-1041.
Joseph, P. S., Selladurai, S., Kannan, S. \& Parthasarathi, V. (1991). Acta Cryst. C47, 674-676.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Nyiondi-Bonguen, E., Sopbue Fondjo, E., Tanee Fomum, Z. \& Döpp, D. (1994). J. Chem. Soc. Perkin Trans. 1, pp. 2191-2195.

Siemens (1994). XSCANS. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sopbue Fondjo, E., Döpp, D. \& Henkel, G. (2006). Tetrahedron, 62, 71217131.

